
Fermilab FERMILAB-FN-0702  August 2001

FERMILAB-FN-702

SPACE-CHARGE EFFECTS ON

BUNCH ROTATION

K.Y. Ng

Fermi National Accelerator Laboratory∗

P.O. Box 500, Batavia, IL 60510

(July, 2001)

Abstract

The longitudinal and transverse space-charge effects on bunch rotation in the
longitudinal phase space designed to produce an intense short proton bunch are
discussed. A criterion for bunch length broadening due to space-charge modification
of the rf potential is given. As for the transverse effect, the incoherent space-charge
tune shifts will lead to path length difference among the beam particles. However,
the cumulative path length difference is found to be too small to affect the bunch
rotation, provided that the chromaticities are corrected.

Based on a talk given at the FFAG 2000 Workshop

KEK, Tsukuba, October 11–13, 2000

∗Operated by the Universities Research Association, Inc., under contract with the U.S. Department
of Energy.



1

I INTRODUCTION

Intense proton bunches as short as 1 to 2 ns are necessary for the efficient production

of pions and muons in order to (1) minimize the expensive cooling process of the muons

and (2) to obtain a reasonable amount of polarization of µ± in a muon collider and of

νµ and ν̄µ in a neutrino factory. This can be done by bunch rotation in the longitudinal

phase space prior to the extraction of the proton bunches.

In this article, we want to investigate the longitudinal and transverse space-charge

effects on the intense beam during the rotation.

II LONGITUDINAL EFFECT

An experiment was performed at the IUCF Cooler Ring to study the rotation of proton

bunches [1] operating below transition. Some parameters of the experiment are listed in

Table I.

Table I: Some parameters of the bunch compression experiment at IUCF.

Kinetic Energy 202.8 MeV

Circumference 86.825 m

Rf harmonic h 5

Rf frequency 9.8316 MHz

Revolution frequency ω0/(2π) 1.9663 MHz

Slip factor η −0.628

The maximum rf voltage employed in the experiment was Vrf = 1000 V, which cor-

responds to a small-amplitude synchrotron tune of νs = 1.164 × 10−3. It was lowered

adiabatically to a minimum of ∼ 5 V and raised suddenly back to 1000 V. The bunch

would be compressed in∼ 1
4

synchrotron oscillation. The minimum bunch length observed

was about στ = 3.8 ns.

The equations of motion governing time advance τ of a beam particle and its fractional
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momentum spread δ in the bunch rotation are

τn+1 = τn +
2πη

ω0
δn , (2.1)

δn+1 = δn +
eVrf

β2E
sinhω0τn+1 +

∆Uspch

β2E
, (2.2)

where n is the turn number, ω0/(2π) is the revolution frequency, Vrf is the rf voltage, h is

the rf harmonic, E is the total nominal particle energy, β is the particle velocity relative

to the velocity of light, and e is the particle charge. The energy increase per turn due to

the space-charge force is

∆Uspch = − e
2

ω0

∣∣∣∣Zn
∣∣∣∣
spch

∂ρ

∂τ

= − e2Nb√
2πω0σ2

τ

∣∣∣∣Zn
∣∣∣∣
spch

τ

στ
e−τ

2/(2σ2
τ) ,

(2.3)

where [Z/n]spch is the space-charge impedance per unit revolution harmonic. Because of

the presence of electron cooling in the experiment, we have assumed a Gaussian distribu-

tion for the longitudinal bunch profile ρ(τ ), with rms length στ , which is normalized to

the number of particles per bunch Nb when integrated over the time advance variable τ .

Notice that |∆Uspch| assumes a maximum at τ = ±στ .

It is clear that the synchrotron tune νs is reduced depending on the space-charge

impedance and the gradient of the local longitudinal beam distribution, |Z/n|spch∂ρ/∂τ .

Thus, each particle oscillates with a different νs. When the repulsive space-charge force

is larger than the focusing rf force, the particle embarks on a hyperbolic trajectory and

becomes unstable. But this instability may not be important because there is only ∼ 1
4

synchrotron oscillation during the whole bunch rotation, and the instability, if it occurs,

is most severe near the end of the rotation when the bunch is shortest and the intensity

gradient is highest.

Notice that the reduction of the synchrotron tune or motion along hyperbolic trajecto-

ries actually helps to reduce the nonlinearity of the rotation. This is because the reduction

is largest for particles in the core of the bunch at the one sigma width where the intensity

gradient is at a maximum. On the other hand, the particles near the separatrices are af-

fected by space charge only minimally. This allows the tails of the bunch to catch up and
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thus reduces the number of particles in the tails. However, when the space-charge force is

large enough, the bunch width will increase as a result of the hyperbolic trajectories for

the core particles.

In the experiment, bunch intensity was Nb = 1 × 109 and [Z/n]spch ∼ −j1500 Ω.

Figures 1, 2, and 3 show the simulations with space charge impedance |Z/n|spch = 0,

1000, 5000, and 10000 Ω. The bucket length was ∼ 102 ns and 102 bins each of width

1 ns were used in the simulations where 160,000 macro-particles were tracked. There were

insignificant differences when the the number of macro-particles was doubled.

It is important to point out that although the bunch appears to have broadened as the

space-charge impedance increases from zero, the actual rms length is shortened instead

according to Fig. 5. The main reason comes from the reduction of the synchrotron tune

near the center of the bunch. This reduction, as stated earlier, compensates for the

nonlinearity of the rf force which imparts slower synchrotron tunes for particles near

the separatrices. As a result, the moment when the rotated bunch is shortest becomes

delayed also. This reduces the number of particles near the separatrices or in the tails

of the bunch. Figure 6 shows the situations of |Z/n|spch = 0, 2000, 4000, 7000, 10000,

15000, 20000, 25000 Ω at the moment when the rms bunch length is shortest. We see

that although the rotated bunch appears to have broadened when |Z/n|spch > 5000 Ω,

the rms bunch length actually does not increase much until |Z/n|spch
>∼ 15000 Ω. Closer

investigation also reveals the hyperbolic trajectories, especially in the last two plots of

Fig. 6, that are responsible for the width broadening of the bunch.

We believe that the effect of space-charge distortion of the rf waveform is governed

by the ratio of the space-charge force to the rf force. From Fig. 5, it appears that in

order to have a final compressed bunch length στ .3.85 ns, the space-charge impedance

per harmonic must be limited to |Z/n|spch . 15000 Ω. In other words, the ratio of the

space-charge force to the rf force must be less than the critical value of

Sp-ch force

Rf force

∣∣∣∣
critical

=
eNb|Z/n|spch√

2πhω2
0σ

3
τVrf

∼ 22.0 . (2.4)

where the shortest compressed value of στ = 3.8 ns, obtained in the simulation for the

IUCF bunch, has been used. It is important to point out that the actual space-charge

impedance of the IUCF Cooler is only |Z/n|spch ≈ 1500 Ω. What we are saying is that,

while a rms bunch length στ = 3.85 ns can be obtained in the absence of space charge,
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Figure 1: Phase-space plot of bunch rotation in the absence of space charge at start, 1/20,
2/20, · · · , 7/20 of a synchrotron oscillation.
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Figure 2: Phase-space plot of bunch rotation when [Z/n]spch = 1000 Ω at start, 1/20, 2/20,
· · · , 7/20 of a synchrotron oscillation.
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Figure 3: Phase-space plot of bunch rotation when [Z/n]spch = 5000 Ω at start, 1/20, 2/20,
· · · , 7/20 of a synchrotron oscillation.
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Figure 4: Phase-space plot of bunch rotation when [Z/n]spch = 10000 Ω at start, 1/20,
2/20, · · · , 7/20 of a synchrotron oscillation.
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Figure 5: Plot showing shortest rms bunch length στ obtained through rotation as
a function of the space-charge impedance. When space charge is small, στ becomes
smaller as a result of reduction of synchrotron oscillation frequency near the core of
the bunch. It increases rapidly later when space charge is large.

a space-charge impedance as large as |Z/n|spch ≈ 15000 Ω will not lead to a longer

compressed rms bunch length although the rf potential will be severely distorted.

This ratio has been computed for Phase I (stage 2) and Phase II of the Fermilab

Proton Driver. The results are listed in Table II. Notice that for Phase I of the Fermilab

Proton Driver, the space-charge-to-rf ratio is very much less than the critical value of

22.0 stated in Eq. (2.4), implying that the bunch will not be affected significantly by

the longitudinal space-charge force during bunch compression. For Phase II operation,

the space-charge-to-rf ratio is roughly at the critical value. Thus, we expect that the

longitudinal space-charge force will not broaden the bunch to more than the designed

1 ns during the bunch compression.
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Figure 6: Phase-space plot of bunch rotation when the rms bunch length is shortest, where
[Z/n]spch is assumed to be 0, 2000, 4000, 7000, 10000, 15000, 20000, 25000 Ω.



10

Table II: Comparison of the space-charge-to rf ratio in the experiment at the IUCF
Cooler ring and bunch compression through rotation in Phase I and Phase II of the
Fermilab Proton Driver.

IUCF Fermilab Proton Driver

Phase I Phase II

Circumference 86.825 711.32 711.32 m

Extraction kinetic energy 0.2028 16 16 GeV

Number per bunch Nb 1 109 1.7 1012 2.5 1013

γ 1.2161 18.053 18.053

β 0.56909 0.99846 0.99846

Revolution frequency 1.9650 0.42081 0.42081 MHz

g0 4.468 4.560 4.560

|Z/n|spch 15000 2.639 2.639 Ohms

Vrf 1.00 1400 1400 kV

Rf harmonic h 5 18 18

Extraction στ 3.85 3 1 ns

Sp-ch to rf ratio 22.0 0.060 23.9

Some consideration is necessary if the bunch intensity in Phase II is increased. One

way to ease the bunch compression problem is to go to a higher rf frequency. In the

Phase II design, there will be a small lower-energy ring in between the linac and the

16-GeV Proton Driver. The lower-energy ring operates at the rf frequency of ∼ 7.5 MHz.

But the rf frequency of the 16-GeV ring can be doubled to ∼ 15 MHz. This should be

possible because in order to obtain a 1 ns-bunch at 16 GeV, the bunch area must be

at least 3 times less than the bunch area designed for Phase I operation, otherwise the

momentum aperture of the 16-GeV will not be large enough to hold the 1 ns-bunch.

Our consideration so far emphasizes on the effect of space-charge distortion of the

rf potential. Microwave instability is less important during the rotation, because the

local momentum spread increases. However, microwave instability can become a problem

when the rf is lowered adiabatically to allow the bunch to fill the bucket. The simulations

reported here have not taken this into account, because all the simulations start with the

bunch matched to the bucket when the Vrf has been lowered.
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Figure 7: Evolution of bunch population through rf phase jump. Note that the par-
ticle motion is relatively linear near the unstable fixed point. Nonlinear rf potential
becomes most important when the rf phase is shifted back to the stable fixed point.

To avoid microwave instability, it will be better not to compress the bunch by phase

rotation. Instead, the method of synchronous phase jump should be used. The syn-

chronous phase is jumped by π so that the bunch center is at an unstable fixed point in

the longitudinal phase space. The bunch will lengthen along one set of separatrices and

compress along the other set. After some time, the synchronous phase is jumped by −π
so that the bunch center is again at the stable fixed point. Allow for ∼ 3

8
of a synchrotron

oscillation, the bunch will rotate to the situation of shortest length. This is illustrated

in Fig. 7. The drift time along the separatrices cannot be too long. Otherwise, not all

particles can return back to inside the bucket after the last phase switch. This allows us

to derive the maximum possible compression ratio [1]

(στ)f
(στ)i

∣∣∣∣
max

∼
√

2√
3(σφ)i

, (2.5)
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where (σφ)i is the initial rms bunch length in rf radian.

One can also avoid the development of the nonlinear tails during the final rotation

of ∼ 3
8

synchrotron oscillation. Instead of switching back to the stable fixed point, the

bunch is extracted immediately at the end of the drift along the separatrices. The bunch

is then sheared back to an upright position in the beam line via a lengthy optic system

with local momentum compaction, or the R56 element of the transfer matrix.

Since this is not a rotation, the bunch length will be
√

2 longer than what was derived

above. However, one may be able to recover this factor of
√

2 by allowing the bunch

to drift somewhat longer along the separatrices before the extraction. This is possible

because the bunch need not be recaptured into a bucket later.

III TRANSVERSE EFFECT

During bunch rotation, the bunch length is shortened and the incoherent space-charge

tune shift increases. As an example, let us consider an earlier design of the Fermilab

Proton Driver, which consists of a small ring of circumference 180.649 m accelerating

protons from the kinetic energy of 1 GeV to 4.5 GeV. The rf harmonic is h = 4 and there

are nb = 4 bunches each with Nb = 5.0× 1013 protons. The 95% normalized emittance is

εN95 = 200× 10−6 πm. The incoherent space-charge tune shift at injection is

∆νsc = − nbNbrp
2γ2βεN95Bf

= −0.131 , (3.1)

where the bunching factor Bf = 0.25 has been used and a transverse uniform distribution

has been assumed.

Bunch rotation is performed at the extraction kinetic energy of 4.5 GeV. When the rf

voltage is reduced to its minimum, assume that the rms bunch length is στ ∼ 1
6

the bucket

length. We would like to compress the bunch to στ = 1 ns by suddenly raising the rf

voltage. The bunching factor Bf changes from 0.418 to 0.0164 during the bunch rotation.

Correspondingly, the incoherent space-charge tune shift changes from ∆νsc = −0.009

to −0.225, and different particles will have different betatron tunes, depending on their

momentum offsets, betatron amplitudes, and local longitudinal densities. Reduction in

betatron tune modifies the momentum compaction factor. Thus the path length of each
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particle will be different and the bunch rotation in the longitudinal phase space will be

affected. To the extreme, if the transition gamma is modified to such an extent that some

particles find themselves above transition and some below transition, synchrotron rotation

will be clockwise for some particles and counter-clockwise for some others. Also the higher

orders momentum compaction may dominate over the zero order. Thus it is possible that

the whole bunch compression through rotation would be jeopardized. In this section, we

will analyze the effect of the space-charge tune shift and find out whether its influence to

the bunch compression by rotation is damaging or not. This is a problem concerning the

coupling between transverse motion and longitudinal motion. To investigate this problem,

let us first revisit a similar problem in the muon collider ring.

III.1 REVISIT A SIMILAR PROBLEM

To maximize the luminosity, the first 2 TeV by 2 TeV muon collider design had low

betatron functions of β∗x = β∗y = 3 mm at the interaction point [2]. The high betatron

functions at the focusing triplets shoot up to ∼ 400 km with natural chromaticities ∼
−1500. To avoid the hour-glass effect which will lead to luminosity reduction, the rms

bunch length is chosen as σ` = 3 mm. Short bunch length requires high rf frequency

and therefore high rf voltage, making the rf system extremely expensive. As a result, one

prefers to have the collider ring isochronous so that no rf system will be necessary.

At the Montauk Workshop in 1996, Bob Palmer [3] pointed out that particles entering

the interaction point at a nonzero angle will have large-amplitude betatron oscillations and

therefore longer path lengths. In the absence of synchrotron oscillation in an isochronous

ring, the width of the bunch will be lengthened. Similar to the problem raised in the

previous section, this is also a problem concerning coupling of transverse motion and

longitudinal motion. It was found that [4] at the normalized emittance εN = 50×10−6 πm,

the path length reduction per turn can be as much as ∆` ∼ 3.52×10−5 m. In 1000 turns,

the bunch would be lengthened by ∆` ∼ 3.52 cm. Note that the design bunch length is

only σ` = 3 mm.

To preserve the bunch length, one requires an exchange between head and tail through

synchrotron oscillation or the collider ring cannot be isochronous. A rule of thumb is that

during half a synchrotron period, the amount lengthened must be less than the rms bunch
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length. Thus, for a designed rms bunch length of 3 mm, the synchrotron period has to

be less than 170 turns. For a 150-turn synchrotron period, one would require a rf voltage

of Vrf = 1.5 GV and a slip factor of |η| ∼ 1.5× 10−5 for the collider ring [3].

A few months later, Bob Palmer said that he was wrong. He learned from Oide that the

large-amplitude path length would not be longer at least up to second order in betatron

amplitudes, providing that chromaticities were corrected [5]. Étienne Forest gave a very

general proof which explain the problem clearly [6].

Here, we are talking about path length per revolution, which is not a well-defined

quantity, since the betatron tunes are not integers. A better defined quantity is the path

length averaged over many revolutions. This definition is valid as long as one is not in a

chaotic region in phase space.

When we average over many turns, the path length (which will always mean the

averaged path length from now on) is dependent on Jx and Jy, the two betatron actions

in the transverse planes, and cannot depend independently on the horizontal displacement

x, horizontal momentum px, vertical displacement y, or the vertical momentum py. Note

that Jx and Jy are invariants. The path length will also be a function of the momentum

of the particle, which is constant in a storage ring without rf. Here, we denote it by δ,

the fractional offset from the nominal momentum.

Proof of Theorem

The canonical variables are (ax, Jx), (ay, Jy), and (−∆`, δ). Here ax and ay are the angle

variables conjugate to Jx and Jy in the two transverse planes. ∆` is the path length in

excess of the length of the design closed orbit, or the length of the on-momentum orbit

when the amplitudes of betatron oscillation are infinitesimal (see Appendix A). Note that

∆` is the actual path length difference instead of an advance along the on-momentum

orbit. This is because the fractional momentum offset δ is measured with respect to the

total nominal momentum p0 and not the longitudinal momentum ps.

Let us consider first an isochronous storage ring without rf so that the momentum

offset δ is also a constant of motion. We also neglect self-field at this moment. Then, it

is clear that the Hamiltonian will be cyclic in ax, ay, and ∆`. If we expand it about the
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design orbit, up to second order,

H = ν0xJx + ν0yJy + aJ2
x + 2bJxJy + cJ2

y + dδ2 + fJxδ + gJyδ . (3.2)

Notice that the term proportional to δ is absent because comparison is made with respect

to the on-momentum orbit with zero betatron amplitudes. From the equations of motion,

we get the betatron tunes νx and νy,

νx =

〈
dax
dθ

〉
=
∂H

∂Jx
= ν0x + 2aJx + 2bJy + fδ , (3.3)

νy =

〈
day
dθ

〉
=
∂H

∂Jy
= ν0y + 2bJx + 2cJy + gδ , (3.4)

and the path length difference per turn ∆`0,

−∆`0
2π

=

〈
−d∆`

dθ

〉
=
∂H

∂δ
= 2dδ + fJx + gJy , (3.5)

where 〈 〉 denotes the average over one turn. The independent variable has been chosen

as θ which increases by 2π per turn. We can readily identify a, b, and c as amplitude-

dependent detunings, d = −1
2
α0R with α0 the momentum compaction factor, and f and g

as the chromaticities. Thus, correcting the chromaticities will alleviate the dependence of

path length on betatron amplitudes. The theorem can be extended by adding more higher-

order terms to the Hamiltonian, and some higher-order chromaticity terms will enter into

the right side of Eq. (3.5). These higher-order chromaticities must also be compensated,

although extremely difficult in reality, in order that the path length difference due to

betatron amplitudes will vanish to higher orders. We will go deeper into the compensation

of path length in Appendices B and C.

It is because of this consideration that all lattices for the muon collider ring designed

later can be made as close to isochronicity as one desires.

III.2 INCOHERENT TUNE SHIFT

Now let us add rf cavities. If the Proton Driver is dispersion-free at the cavities, the

additional term in the Hamiltonian will not be dependent on the momentum deviation

δ, and therefore Eq. (3.5) will not be affected, even though this additional term in the

Hamiltonian depends on the betatron oscillation amplitudes, Jx and Jy.
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We next include the self-field, which can be regarded as an external force acting on the

particle under consideration. Notice that the self-field space-charge tune shift in Eq. (3.1)

is inversely proportional to γ3β2 (since εN95 ∝ γβ). Thus, the tune shift is momentum

dependent and can be written as, with z = x, y,

∆νz ≈ ∆νsc,z
(
1− 3δ + 12δ2

)
, (3.6)

where ∆νsc,z is evaluated at the nominal momentum and is in general a function of

betatron amplitudes. It is evident that the last two terms represent the first two lowest

orders of chromaticity generated by the transverse space-charge force. Notice that the

betatron action Jz is related to the transverse offset z from the off-momentum closed

orbit by z =
√

2βzJz, where βz is the betatron function. Thus, the contribution of the

self-field space-charge tune shift to the Hamiltonian is

∆H = ∆Nsc(Jx, Jy)
(
1− 3δ + 12δ2

)
− 1

2
R [∆αsc,0 +O(δ)] δ2 , (3.7)

where
∂

∂Jx
∆Nsc(Jx, Jy) = ∆νsc,x

∂

∂Jy
∆Nsc(Jx, Jy) = ∆νsc,y . (3.8)

The second term† in Eq. (3.7) accounts for the change in momentum compaction factor

arising from the space-charge tune shift. The dependency of ∆αsc,0 on ∆νsc,x is called

Umstätter effect. For the situation of a uniform focusing ring, the lowest order momentum

compaction factor is

α0 =
1

ν2
x

, (3.9)

where νx is the horizontal tune. Thus, the space-space tune shift leads to a change of

transition gamma

∆γt = ∆νsc,x . (3.10)

Obviously, this relation will be lattice dependent and will be much more complicated in

a realistic accelerator ring. In general ∆αsc,0 +O(δ) is a function of momentum spread δ.

Thus the derivative with respect to δ will give the extra fractional change in orbit length

and therefore the change in all orders of the momentum compaction factor. However,

∆αsc,0 + O(δ) must be Jx and Jy independent. This is because if it depends on Jx and

†This term has been mistakenly left out in Chapter 4 (p. 4-8) of The Proton Driver Design Study,
Ed. W. Chou and C. Ankenbrandt, Fermilab Report TM-2136, 2000.
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Jy, this term will contribute to the betatron tunes and thus modify the space-charge tune

shifts ∆νsc,z which we introduced earlier‡. This conclusion is extremely important since

this second term in Eq. (3.7) will lead to the same shift in the transition gamma for all

particles with the same momentum and at location with the same longitudinal density

regardless of their transverse deviation from the off-momentum closed orbit. All the

amplitude-dependent shift in transition gamma is contained in the first term of Eq. (3.7).

Now let us derive the additional path length difference due to space-charge tune shift.

We obtain

−∆`0
2π

=
∂∆H

∂δ
= ∆Nsc(Jx, Jy) (−3 + 24δ)−R

[
∆αsc,0δ +O(δ2)

]
. (3.11)

The second term, which is amplitude independent, comes from the second term of Eq. (3.7)

and ∆αsc,0 is the lowest order modification to the momentum compaction. The first part

of the first term on the right of Eq. (3.11) shows path length dependence on amplitude of

a on-momentum particle, a reminisce of the terms fJx and gJy in the original equation

of motion [Eq. (3.5)], and has its origin from the additional chromaticities

∆ξx = −3∆νsc,x(1− 8δ) , ∆ξy = −3∆νsc,y(1− 8δ) . (3.12)

The second part of the first term on the right side of Eq. (3.11) leads to amplitude-

dependent momentum compaction. Comparing with the dδ2 term in Eq. (3.2) and remem-

bering that d = −1
2
α0R, the self-field tune shift produces an up-shift in the momentum

compaction (∆νsc,0 is negative and ∆αsc,0 is mostly positive)

∆α0 = −6
∆Nsc

R
+ ∆αsc,0 , (3.13)

or a down-shift of the transition gamma

∆γ
T

= γ3
T

(
3∆Nsc

R
− ∆αsc,0

2

)
. (3.14)

To have a better understanding, let us first assume the beam to be round and have a

Kapchinskij-Vladimirskij (KV) distribution [7]. Then, the space-charge tune shift for all

‡Because of the same reason, besides what is contained in Eq. (3.7), there will not be any more
alteration of the Hamiltonian of Eq. (3.2) by the space-charge tune shift. In particular, the terms fJxδ
and gJyδ will not be changed; otherwise, the chromaticities exhibited in Eq. (3.6) will be altered.
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beam particles with the same momentum offset and local longitudinal density will be the

same and

∆Nsc = ∆νsc(Jx + Jy) , (3.15)

where ∆νsc = ∆νsc,x = ∆νsc,y and is given by Eq. (3.1) at the nominal momentum. We

further assume the lattice to be FODO like so that Eq. (3.10) applies. Then the additional

path length difference in Eq. (3.11) becomes

∆`0
C

= ∆νsc(3− 12δ)
Jx + Jy
R

−
[

2∆νsc
γ3
T

δ +O(δ2)

]
, (3.16)

where the last term is amplitude independent. Let us apply this to Phase II of the Fermilab

Proton Driver, where the number per bunch is Nb = 2.5×1013 and rf harmonic h = 18. For

the στ = 1 ns compressed bunch, the bucket bunching factor isBf ≈
√

2πhf0στ = 0.01899.

With normalized 95% emittance εN95 = 60× 10−6 πm and an average betatron function

of βx = 10 m, the self-field space-charge tune shift is ∆νsc = −0.297. The maximum

actions for betatron motion are only Jx = Jy = 1.67 10−6 m. The momentum aperture of

the vacuum chamber is δ = 2%. With the nominal transition gamma of γ
T

= j27.71, the

maximum contributions to the additional fractional path difference are 2.62×10−8 for the

first term of Eq. (3.16) and 5.57×10−7 for the second term. The maximum rf voltage used

during the bunch rotation is Vrf = 1.4 MV, and the slip factor is η = −0.00437, giving

a synchrotron tune of νs = 1.02 × 10−3. Thus during the 1
4
-synchrotron-period bunch

rotation, the total cumulative maximum additional path difference due to space-charge

tune shift is 0.32× 10−6 for the first term and 4.56 × 10−5 for the second term. On the

other hand, the ratio of the rms bunch length at extraction to the ring circumference is

στ/T0 = 42.11 × 10−5, which is much larger. These numbers are tabulated in Table III.

Since the space-charge tune shift increases during the bunch rotation, a factor of 1
2

was

included in the computation of the first term of the cumulative path-length offset. Since

the momentum spread also increases during the bunch rotation, a factor of 1
3

was included

in the computation of the second term. We also notice that the first term, which is

amplitude dependent, is always an order of magnitude smaller than the second term. In

conclusion, the effect of space-charge tune shift on bunch compression through rotation

is very minimal for the present design of the Fermilab Proton Driver.

Next, let us relax the restriction of the KV distribution. Notice that in computing

the contribution to ∆`0/C of the particle with the largest Jx and Jy in Eq.(3.11), ∆Nsc
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Table III: Fractional path-length offsets due to space-charge tune shift for the cur-
rent design Phase II and an earlier design of the Fermilab Proton Driver. The
cumulative fractional path-length offsets are found to be less than the bunch-length-
to-ring-circumference ratio, στ/T0, showing that the influence of space-charge tune
shift is negligible for the bunch compression.

Current Design Earlier Design

Phase II

Circumference 711.32 180.65 m

Extraction kinetic energy 16 4.5 GeV

Number per bunch Nb 2.5 1013 5.0 1013

95% normalized emittance εN95 60 10−6 200 10−6 πm

Betatron function βx 10 10 m

Max. rf voltage Vrf 1.4 4.0 MV

Rf harmonic h 18 4

Transition gamma γ
T

j27.71 j10

Synchrotron tune νs 0.00102 0.00438

At extraction

Bunch length στ 1 1 ns

Bunching factor Bf 0.0190 0.0164

Space-charge tune shift νsc −0.297 −0.450

Max. betatron action Jx, Jy 1.66 10−6 17.5 10−6 m

Max. half momentum spread 0.02 0.02

Fractional path length offset per turn

First term of Eq. (3.16) 0.26 10−7 0.16 10−5

Second term of Eq. (3.16) 5.57 10−7 1.80 10−5

Cumulative fractional path length offset for whole compression

First term of Eq. (3.16) 0.32 10−5 0.47 10−4

Second term of Eq. (3.16) 4.46 10−5 3.42 10−4

Bunch-length-to-ring-circum. ratio στ/T0 42.1 10−5 16.6 10−4
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is just the sum of the areas under the curves ∆νsc,x as a function of Jx and ∆νsc,y as a

function of Jy. We have, on the other hand, ∆Nsc = ∆νsc(Jx+Jy) in the KV distribution.

Thus, the computation of path length will follow exactly the example of the KV model if

we substitute the KV space-charge tune shift ∆νsc with 〈∆νsc,x〉 and 〈∆νsc,y〉, the mean

value of the space-charge tune shifts over Jx or Jy. For a round beam with bi-Gaussian

distribution truncated at 3 sigmas, 〈∆νsc,x〉 or 〈∆νsc,y〉 is approximately 1.65 times if the

distribution were KV.

In the computation of the space-charge tune shift, for example ∆νsc,x, εN95 in Eq. (3.1)

should have been γβa2
x/βx, where ax is the horizontal radius of the beam that encloses

95% of the beam particle. However, in general,

ax = 〈D〉δ +
√

2βxJx , (3.17)

where 〈D〉 is the average dispersion and has been so far neglected in our former discussion.

For the present design of the Fermilab Proton Driver in Phase II, even if 〈D〉 ≈ 1 m, the

dispersion contribution§ at 2% momentum spread is 〈D〉δ = 20 mm which is 3.5 larger

than the maximum betatron contribution
√

2βxJx = 5.77 mm. In other words, the space-

charge tune shift that goes into the path-length estimation in Eq. (3.16) should be an

order of magnitude smaller. This will further diminish the influence of the space-charge

tune shift.

Let us come back to the 4.5 GeV ring discussed earlier in this section. If the 95%

normalized emittance is εN95 = 400 × 10−6 πm and the average betatron function is

〈βx〉 ∼ 10 m, the space-charge tune shift is ∆νsc = −0.450 at extraction when the rms

bunch length is compressed to στ = 1 ns. Near the end of the compression process, the

fractional path-length offset per turn is 0.16 × 10−5 for the first term of Eq. (3.16) and

1.80 × 10−5 for the second term. With Vrf = 4 MV as the maximum rf voltage and

γ
T

= j10 as the transition gamma, the cumulative fractional path-length offset becomes

0.47 × 10−4 for the first term and 3.43 × 10−4 for the second. These are much smaller

than the ratio of final bunch length to ring circumference στ/T0 = 16.6 × 10−4. Again,

the influence of space-charge tune shift is small. The results are tabulated in Table III.

On the other hand, the potential-well distortion due to space charge discussed in Sec. II

§A more accurate computation should take into account of the modification of horizontal dispersion
and the introduction of vertical dispersion by the self-field space-charge tune shift. See Ref. [8] for detail.
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can be more severe for this ring of the earlier design. For example, with a longitudinal

space-charge impedance |Z/n|spch = 25 Ω and a maximum rf voltage Vrf = 4 MV, the

space-charge-to-rf ratio is as large as 47.3.

There has been the idea of changing the lattice near extraction so that the beam is

near transition and the bunch narrowing effect near transition can be utilized [9]. This

does not appear to be an appealing idea. First, during the bunch compression, beam

particles see a spread in space-charge tune shift ∆νsc which translates into a spread

in transition gamma of ∆γ
T
≈ ∆νsc as a result of Umstätter effect. Thus, when the

synchronous particle is less than |∆νsc| from the transition gamma, some particles will

be above transition and some below making bunch rotation impossible, because some

particles may be rotating clockwise and some counter-clockwise. Second, synchrotron

oscillation will be slow when it is close to transition and a long duration will allow the

growth of instabilities. Third, near transition higher order momentum compaction will be

important. Space-charge tune shift introduces extra higher order momentum compaction

which is dependent upon particle density, betatron amplitudes, as well as lattice structure.

As a result, this contribution becomes a spread among the particles and it cannot be

eliminated by sextupoles. Synchrotron motions of beam particles will therefore be very

different depending on their momentum offset, betatron amplitude, and also location in

the bunch, making bunch compression of an intense beam by rotation in the longitudinal

phase space impossible.

It is important to point out that by having the Jzδ2 term in the additional Hamiltonian

[Eq. (3.7)], we must include the same term into the original space-charge free Hamiltonian

[Eq. (3.2)]. This term represents the next order chromaticity, which will contribute a

down-shift to γ
T

just like the first term Eq. (3.14) with ∆Nsc = 〈∆νsc,x〉Jx + 〈∆νsc,y〉Jy
replaced by 1

24
(ξx1Jx+ξy1Jy), where ξz = ξz0+ξz1δ+· · · . For a linear machine, ξz1 = −2ξz0.

Thus, this order of chromaticity from the lattice can lead to a much larger spread in γ
T

than the contribution from the space charge, and may require correction to ensure the

bunch rotation.
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IV CONCLUSION

We have discussed the longitudinal and transverse space-charge effects on the phase-

space rotation of an intense proton bunch during bunch compression. The longitudinal

space-charge force counteracts the rf focusing force. If the space-charge force is not too

large, the slowing down of the synchrotron motion near the core of the bunch will help

to cancel part of the linearity of the rf force. However, when the space-charge force is

large enough, the bunch will be broadened during rotation so that bunch compression

becomes impossible. Results of simulations and an experiment at the IUCF Cooler Ring

indicate that the longitudinal space-charge effect will be negligible in Phase I (stage 2)

of the Fermilab Proton Driver project. However, the space-charge force will be on the

borderline in Phase II, where much shorter and more intense bunches are required.

Transversely, the space-charge force introduces incoherent betatron tune shifts during

bunch rotation, which can be even larger than the self-field tune shifts at injection. It is

possible that particles with different betatron tunes will have different path lengths and

will therefore jeopardize the bunch rotation process. The most important contribution to

path length difference is Umstätter effect which has momentum spread dependency. The

less important contribution is betatron amplitude dependency. It has been found that

the largest cumulative fractional path length offset during the whole bunch rotation is

still one order of magnitude less than the ratio of the compressed rms bunch length and

the ring circumference in the current design of the Fermilab Proton Driver in Phase II.

Thus it can be concluded that the influence of space-charge tune shift on bunch com-

pression is negligibly small unless the transition energy of the ring is very close to the

extraction energy of the ring, at which the bunch rotation is performed. On the other

hand, the chromaticities of the accelerator ring may have a much larger modification of

the amplitude-dependent momentum compaction and therefore much larger contribution

to the path length difference. Chromaticity correction of the lowest order and possibly

also the next order may be necessary to ensure the bunch rotation.

Finally, we have given, in the Appendices, deeper insight into the relation between path

length increase due to finite betatron oscillation amplitudes and chromaticity correction.

In the presence of sextupoles, it has been shown explicitly that chromaticity correction

does indeed shorten the particle path length.
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APPENDIX

A CANONICAL VARIABLES

In the Frenet-Serret coordinate system, the canonical pairs are

(z, pz) and (−∆t,∆E) , (A.1)

where z = x or y, ∆E is the energy offset of the particle from the design energy of the

ring, and ∆t is average extra time taken by the particle to complete a revolution. Using

the generating function

F2(∆t,∆p) = −∆t
[√

(∆p+ p0)2 +m2c4 − E0

]
, (A.2)

where p0 and E0 are the design total momentum and energy of the ring and ∆p the mo-

mentum offset of the particle with rest mass m, (−∆t,∆E) is transformed to (−∆`,∆p),

where 
∆E =

∂F2

∂(−t) =
√

(∆p+ p0)2 +m2c4 − E0 = E −E0 ,

−∆` =
∂F2

∂∆p
= −v∆t .

(A.3)

Thus ∆` is the path length offset per turn with v the particle velocity. The Frenet-Serret

Hamiltonian is ps, the longitudinal momentum. Performing a scale transformation so that

the new Hamiltonian is ps/p0, the canonical coordinate pairs become

(z, z′) and (−∆`, δ) , (A.4)

where z′ = pz/p0 and δ = ∆p/p0.

B PATH LENGTH AND CHROMATICITIES

In order to better understand why the particle path length can be independent of

betatron amplitudes, we try to compute the actual path length. The path length of a

particle is given by

C =

√(
1 +

x

ρ

)2

+ x′2 + y′2 , (B.5)
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where prime denotes the derivative with respect to the distance s along the design closed

orbit and ρ is the radius of curvature at s. If we do an expansion and keep up to the

second order terms, we have for the relative path difference,

∆C

C0

=
x

ρ
+
x′2

2
+
y′2

2
, (B.6)

where the x2/ρ2 terms just cancel each other. First consider a linear lattice with only

dipoles and normal quadrupoles. Let us consider only on-momentum particles. The

horizontal and vertical motions can be written as

x =
√

2βxJx cos(ψx + ϕx) , (B.7)

y =
√

2βyJy cos(ψy + ϕy) , (B.8)

where

ψx(s) =

∫ s ds′

βx(s′)
and ψy(s) =

∫ s ds′

βy(s′)
(B.9)

are the horizontal and vertical Floquet phase advances. To take care of the fact that the

particle passes through location s at different x and y every turn, we have introduced the

random phases ϕx and ϕy. It is clear that x/ρ does not contribute in a linear machine

when averaged over ϕx. It is easy to compute

x′ = −
√

2Jx
βx

[
sin(ψx + ϕx) + αx cos(ψx + ϕx)

]
,

y′ = −
√

2Jy
βy

[
sin(ψy + ϕy) + αy cos(ψy + ϕy)

]
, (B.10)

where αx = −1
2
β ′x and αy = −1

2
β ′y, with the prime denoting derivative with respect to s.

Hence, we obtain
∆C

C0
=
Jx
2

〈
1 + α2

x

βx

〉
+
Jy
2

〈
1 + α2

y

βy

〉
. (B.11)

Thus, from Eq. (3.5), we can identify

f = −R
2

〈
1 + α2

x

βx

〉
and g = −R

2

〈
1 + α2

y

βy

〉
. (B.12)

On the other hand, the natural chromaticities are

ξz = − 1

4π

∮
βz(s)Kz(s)ds z = x, y , (B.13)
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where the focusing strengths¶

Kx(s) =
1

ρ2(s)
+
B′y(s)

(Bρ)0
and Ky(s) = −

B′y(s)

(Bρ)0
, (B.14)

with B′y being the quadrupole gradient (derivative with respect to x) and (Bρ)0 the

magnetic rigidity of the on-momentum particle, are related to the Twiss parameters by

Kzβz = α′z +
1 + α2

z

βz
z = x, y . (B.15)

It is then easy to show that

ξz = −R
2

〈
1 + α2

z

βz

〉
z = x, y , (B.16)

which are exactly f and g given in Eq. (B.12).

C SEXTUPOLES AND PATH LENGTH

COMPENSATION

Now let us put in sextupoles that correct for the chromaticities and investigate how

the particle path length becomes shortened. Betatron oscillations with finite amplitudes

will contribute positively to x′2 and y′2. Thus, according to Eq. (B.5) or (B.6), it appears

to be difficult to understand how the path length can be compensated by chromaticity

correction. The answer lies in the fact that the closed orbit with finite betatron amplitudes

moves inward and is therefore shortened. The magnetic field pattern of an F -sextupole

correcting for the horizontal chromaticity is shown in Fig. 8(a), where the particle motion

is coming out of the paper. Here, the dispersion function at the sextupole is assumed

positive. The directions of the magnetic field are correct because a particle with positive

momentum offset will most probably cross the sextupole near the large dot with x > 0,

see a positive vertical magnetic field By, and receive a kick with x′ < 0, or towards the

center of the accelerator ring, thus enhancing the F -quadrupole focusing. On the other, a

¶Here, (x, y, s) forms a right-handed coordinate system, where x represents the horizontal displace-
ment, y represents the vertical displacement, and s is the direction of the beam longitudinal motion. This
implies that B′y = dBy/dx > 0 for the F -quadrupole and B′y < 0 for the D-quadrupole.
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F-Sextupole D-Sextupole
Beam coming out of paper Beam coming out of paper

(a) (b)

Figure 8: Magnetic field pattern of (a) an F -sextupole correcting for the horizontal
chromaticity and (b) a D-sextupole correcting for the vertical chromaticity, with
the direction of particle motion coming out of the figure. Notice that a particle
with horizontal betatron displacement crossing the F -sextupole or vertical betatron
displacement crossing the D-sextupole will see a positive vertical magnet field and
will therefore be kicked towards the center of the ring. Here, the dispersion function
at the sextupoles has been assumed to be positive.

particle with negative momentum offset will most probably cross the sextupole near the

large dot with x < 0, see a positive vertical magnetic field By, and receive a kick with

x′ < 0, or towards the center of the accelerator ring, thus weakening the F -quadrupole

focusing.

Now consider an on-momentum particle with a finite betatron oscillation amplitude.

It is clear that particle crossing the sextupole with a horizontal displacement like either

large dots in the figure (the average vertical displacement should be much smaller because

βx � βy at the F -sextupole) will receive a kick with x′ < 0, or towards the center

of the accelerator ring, independent of whether the horizontal displacement is positive

or negative. The same is true for a D-sextupole, whose magnetic field is depicted in

Fig. 8(b). A particle crossing the sextupole with a vertical displacement like the large

dots in the figure will see a positive vertical magnetic field By and receive a kick with

x′ < 0 as well. Thus chromaticity correction sextupoles will move the averaged closed

orbit of particles with betatron amplitudes inside the designed closed orbit (with zero

betatron amplitudes). An inner orbit has shorter path length, therefore compensating

for the extra excursion of the betatron oscillations. The contribution of the sextupoles
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must come from the x/ρ term in Eq. (B.5) or (B.6). Thus, the contribution becomes

global and is derived from the dipoles where the radius of curvature is nonzero. This

is understandable, because dipoles generate dispersion, from which the sextupoles are

able to correct for the chromaticities. The effect is global because the ring is a closed

entity. In below, we are going to show that this global contribution sums up to exactly

the chromaticity corrections. As an illustration, we introduce a lattice consisting of 14

FODO cells plus some long straight sections. Each cell has horizontal and vertical phase

advances 90.0◦ and 85.8◦. The quadrupoles are thin and between them are filled with

dipoles. As shown in Fig. 9 is the design closed orbit AB for two FODO cells starting

from a half F -quadrupole and ending with a half F -quadrupole. The radius of curvature

at the dipoles is 30 units. A particle starting at A with a horizontal offset x but zero x′ is

tracked for two FODO cells. The path is shown in dashes when all sextupoles are turned

Figure 9: (color) A particle is tracked for two FODO cellsAB each having horizontal
and vertical phase advances 90.0◦ and 85.8◦. The starting and ending elements are
both half F -quadrupoles. With an initial horizontal offset x but zero x′, its path
is shown as dashes when all the sextupoles are off, and becomes dot-dashed when
the sextupoles canceling chromaticities are on. It is evident that the path length
becomes shorter with the chromaticities corrected.
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off. All the sextupoles at the F and D quadrupoles are now turned on so that both the

horizontal and vertical chromaticities are canceled. The particle is tracked again and its

path is shown as dot-dashed. It is evident that the path length becomes shorter than

when the sextupoles are turned off.

Because sextupoles bring about nonlinearity to the lattice, the horizontal displacement

of the particle is no longer given by the linear term O(
√
Jx) in Eq. (B.7), which averages

to zero over the random phase ϕx. In fact, there is a O(Jx) term which does not vanish

when averaged over the random phase ϕx and must be included in the x/ρ term. It is the

closed orbit distortion δx(s) due to presence of the sextupoles and is given by [10, 12, 13]

δx(s) = 2
√
βx
[
− 2JxB1(ψx) + 2JyB̄(ψx)

]
. (C.1)

In above, B1(ψx) and B̄(ψx) are two of the 5 distortion functions introduced by Tom

Collins to describe the orbit distortion in the presence of the sextupoles. They have the

following properties: [10, 12, 11, 13]

1. They are periodic functions of the ring.

2. (B1, B′1) and (B̄, B̄′), where the prime represents derivative with respect to ψx, rotate

like vectors by the Floquet angle ψx along the ring when there is no sextupole.

3. On crossing the k-th thin sextupole of length ` at location sk, B1 and B̄ are contin-

uous, while B′1 and B̄′ jump, respectively, by 1
4
Sk and 1

4
S̄k, where

Sk = lim
`→0

[
β3/2
x

B′′y `

2(Bρ)0

]
k

and S̄k = lim
`→0

[
β1/2
x βy

B′′y`

2(Bρ)0

]
k

, (C.2)

with (B′′y `)k representing the integrated strength of the k-th sextupole.

From these 3 properties, B1 and B̄ can be written explicitly as

B1(ψx) =
1

2 sinπνx

∑
k

Sk
4

cos
(
|ψx − ψxk| − πνx

)
, (C.3)

B̄(ψx) =
1

2 sin πνx

∑
k

S̄k
4

cos
(
|ψx − ψxk| − πνx

)
, (C.4)

where the summation is over all the sextupoles in the ring.
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We next make use of the fact the dispersion D satisfies

d2D

ds2
+KxD =

1

ρ
(C.5)

to arrive at ∮
δx

ρ
ds⇒ − Jx

2 sinπνx

∑
k

Sk

∮
x̂

(
d2D

ds2
+KxD

)
ds , (C.6)

where we have dropped the Jy-term for the time being and used the short-hand notation

x̂ =
√
βx cos

(
|ψx − ψxk| − πνx

)
. (C.7)

Notice that away from sextupoles, x̂ satisfies the homogeneous Hill’s equation

d2x̂

ds2
+Kxx̂ = 0 . (C.8)

Thus, we can integrate Eq. (C.7) by parts to get∮
δx

ρ
ds⇒ Jx

2 sin πνx

∑
k

Sk

[
D
dx̂

ds

]sk−
sk+

= −Jx
∑
k

[
SD√
βx

]
k

, (C.9)

where across the k-th sextupole, the integration has been performed to sk− just before

the sextupole and from sk+ just after the sextupole. Also use has been made of the fact

that x̂ is continuous across the k-th sextupole while
dx̂

ds
jumps by

2 sin πνx√
βxk

. Including the

Jy-term and using Eq. (C.2), we finally obtain∮
δx

ρ
ds = −Jx

∑
k

[
βxD

B′′y`

2(Bρ)0

]
k

+ Jy
∑
k

[
βyD

B′′y`

2(Bρ)0

]
k

. (C.10)

Since DB′′y ` is positive for the F -sextupoles and negative for the D-sextupoles, the path

length of the averaged closed orbit is indeed reduced in the presence of finite betatron

amplitudes. The chromaticity corrections by the sextupoles are

∆ξx =
1

4π

∑
k

[
βxD

B′′y `

(Bρ)0

]
k

and ∆ξy = − 1

4π

∑
k

[
βyD

B′′y`

(Bρ)0

]
k

, (C.11)

which are both positive for natural chromaticity compensation. Notice that we have not

included the sextupole contribution to x′2 and y′2 in Eq. (B.5). This is because so far we
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have been working up to first order in sextupole strength. Complementary to Eq. (C.1),

the sextupole modification of the closed orbit is also given by

δx′(s) = 2
√
βx

[
− 2JxB

′
1(ψx) + 2JyB̄

′(ψx)
]
, (C.12)

which, together with Eq. (B.10), gives the horizontal divergence of the particle. In com-

puting x′2, the cross term vanishes when averaged over the random phase ϕx. Thus the

sextupole contribution is second order in the sextupole strength.

Including the linear part of the lattice, we can therefore write

∆C = 2πJx

[
R

2

〈
1 + α2

x

βx

〉
−∆ξx

]
+ 2πJy

[
R

2

〈
1 + α2

y

βy

〉
−∆ξy

]
, (C.13)

or‖

∆C = −2π
[
Jx (ξx + ∆ξx) + Jy (ξy + ∆ξy)

]
, (C.14)

where ξx and ξy are the horizontal and vertical natural chromaticities. The reduction of

the orbit length enhancement due to finite betatron amplitudes by chromaticity correction

now becomes obvious.

The contribution from other nonlinear elements in the lattice can be computed in a

similar way when the concept of distortion functions is extended [14].

‖The result in Eq.(C.14) has also been quoted in Ref. [5]. However, no derivation has been given.
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